Market Discipline Working For and Against Financial Stability: The Two Faces of Equity Capital

Joseph P. Hughes
Rutgers University

Loretta J. Mester*
Federal Reserve Bank of Cleveland

Choon-Geol Moon
Hanyang University

IAES Fall Conference, Montreal 2017

*The views expressed here do not necessarily represent those of the Federal Reserve Bank of Cleveland or the Federal Reserve System.
Does the capital market discipline bank risk-taking?

• “Except where market discipline is undermined by moral hazard, for example, because of federal guarantees of private debt, private regulation generally has proved far better at constraining excessive risk-taking than has government regulation.” – Alan Greenspan, 2005
Does the capital market encourage bank risk-taking?

• “Except where market discipline is undermined by moral hazard, for example, because of federal guarantees of private debt, private regulation generally has proved far better at constraining excessive risk-taking than has government regulation.” – Alan Greenspan, 2005

• “When the music stops, in terms of liquidity, things will be complicated. But as long as the music is playing, you've got to get up and dance. We're still dancing.” – Charles O. Prince, 2007
Does the capital market encourage bank risk-taking?

• “When the music stops, in terms of liquidity, things will be complicated. But as long as the music is playing, you've got to get up and dance. We're still dancing.” – Charles O. Prince, 2007

• “...those of us who have looked to the self-interest of lending institutions to protect shareholders’ equity (myself especially) are in a state of shocked disbelief.” – Alan Greenspan, 2008
The Role of Market Discipline in Promoting Bank Safety

- The second Basel Capital Accord rests on three “pillars”:
 - Minimum capital standards
 - Supervisory review
 - Market Discipline
The Role of Market Discipline in Promoting Bank Safety

- The second Basel Capital Accord rests on three “pillars”:
 - Minimum capital standards
 - Supervisory review
 - Market Discipline
The Role of Market Discipline in Promoting Bank Safety

• The second Basel Capital Accord rests on three “pillars”:
 • Minimum capital standards
 • Supervisory review
 • Market Discipline

• BIS: “Market discipline imposes strong incentives on banks to conduct their business in a safe, sound and efficient manner, including an incentive to maintain a strong capital base as a cushion against potential future losses arising from risk exposures.”
The Role of Market Discipline in Promoting Bank Safety

• The second Basel Capital Accord rests on three “pillars”:
 • Minimum capital standards
 • Supervisory review
 • Market Discipline

• BIS: “Market discipline imposes strong incentives on banks to conduct their business in a safe, sound and efficient manner, including an incentive to maintain a strong capital base as a cushion against potential future losses arising from risk exposures.”
How does the capital market discipline bank risk-taking?

• Dichotomous risk-taking strategies to maximize value (Marcus 1984)
How does the capital market discipline bank risk-taking?

• Dichotomous risk-taking strategies to maximize value (Marcus 1984)
 - **Low-risk capital strategy** to protect valuable investment opportunities
 • Relatively high expected cost of financial distress
How does the capital market discipline bank risk-taking?

- Dichotomous risk-taking strategies to maximize value (Marcus 1984)
 - **Low-risk capital strategy** to protect valuable investment opportunities
 - Relatively high expected cost of financial distress
 - **High-risk capital strategy** to exploit safety net and “reach for yield”
 - Lower valued investment opportunities
 - Relatively low expected cost of financial distress
 - Option value of explicit/implicit deposit insurance
Dichotomous Capital Strategies

• Low-risk capital strategy – high capital ratio – to protect valuable investment opportunities
Dichotomous Capital Strategies

• Low-risk capital strategy – high capital ratio – to protect valuable investment opportunities
 – Market Discipline promotes financial stability.
Dichotomous Capital Strategies

• Low-risk capital strategy – high capital ratio – to protect valuable investment opportunities
 – Market Discipline promotes financial stability.

• High-risk capital strategy – low capital ratio – to exploit safety net and “reach for yield”
Dichotomous Capital Strategies

• Low-risk capital strategy – high capital ratio – to protect valuable investment opportunities
 - Market Discipline promotes financial stability.

• High-risk capital strategy – low capital ratio – to exploit safety net and “reach for yield”
 - Market Discipline works against financial stability.
Incentives to Reach for Yield

- Incentive to take risk
 - Keeley (1990): Links increased competition to the incentive to increase leverage
Evidence on Risk-Taking Incentives

• Risk-Taking Incentives
 – Keeley (1990): Links increased competition to the incentive to increase leverage

• Papers that find evidence of dichotomous capital strategies
Dichotomous Risk-Taking Incentives

- **Data**
 - 2013 data on 167 publicly traded BHCs
 - 2007 data on 142 publicly traded BHCs

- **Performance Measurement**
 - Market Value of Assets
 - Market Value Inefficiency
 - Best practice market value of assets given book-value investment in assets
 - Difference between best-practice value and achieved market value = market-value shortfall
 - Inefficiency ratio = value shortfall / best-practice value
Estimating Highest (Best-Practice) Potential Value

- $MVA_i = \alpha + \beta (BVA_i) + \gamma (BVA_i)^2 + \epsilon_i$

- with maximum likelihood techniques
Estimating Highest (Best-Practice) Potential Value

- \(MVA_i = \alpha + \beta (BVA_i) + \gamma (BVA_i)^2 + \varepsilon_i \)
- with maximum likelihood techniques
- where \(\varepsilon_i = \nu_i - \mu_i \) is a composite error term used to distinguish statistical noise,
Estimating Highest (Best-Practice) Potential Value

- \(MVA_i = \alpha + \beta(BVA_i) + \gamma(BVA_i)^2 + \varepsilon_i \)
- with maximum likelihood techniques
- where \(\varepsilon_i = \nu_i - \mu_i \) is a composite error term used to distinguish statistical noise,
- \(\nu_i \sim iid \, N(0,\sigma_v^2) \)
Estimating Highest (Best-Practice) Potential Value

- \(MVA_i = \alpha + \beta (BVA_i) + \gamma (BVA_i)^2 + \varepsilon_i \)
- with maximum likelihood techniques
- where \(\varepsilon_i = \nu_i - \mu_i \) is a composite error term used to distinguish statistical noise,
- \(\nu_i \sim iid \, N(0, \sigma^2_\nu) \)
- from the systematic shortfall
Estimating Highest (Best-Practice) Potential Value

- $MVA_i = \alpha + \beta (BVA_i) + \gamma (BVA_i)^2 + \varepsilon_i$
- with maximum likelihood techniques
- where $\varepsilon_i = \nu_i - \mu_i$ is a composite error term used to distinguish statistical noise,
- $\nu_i \sim \text{iid } N(0, \sigma^2_\nu)$
- from the systematic shortfall
- $\mu_i (> 0) \sim \exp(-\mu u)$
Estimating Highest (Best-Practice) Potential Value

- Achieved MV = Frontier MV − Lost MV
- $MVA_i = \alpha + \beta (BVA_i) + \gamma (BVA_i)^2 + \nu_i - \mu_i$
Estimating Highest (Best-Practice) Potential Value

- Achieved MV = Frontier MV – Lost MV
- $\text{MVA}_i = \alpha + \beta (\text{BVA}_i) + \gamma (\text{BVA}_i)^2 + \nu_i - \mu_i$
Estimating Highest (Best-Practice) Potential Value

• Achieved MV = Frontier MV − Lost MV

• $MVA_i = \alpha + \beta (BVA_i) + \gamma (BVA_i)^2 + \nu_i - \mu_i$
Estimating Highest (Best-Practice) Potential Value

- Achieved MV = Frontier MV − Lost MV
- $MVA_i = \alpha + \beta (BVA_i) + \gamma (BVA_i)^2 + \nu_i - \mu_i$
Estimating Highest (Best-Practice) Potential Value

- Achieved MV = Frontier MV − Lost MV
- $MVA_i = \alpha + \beta (BVA_i) + \gamma (BVA_i)^2 + \nu_i - \mu_i$
- Highest Potential MVA_i

 $= \alpha + \beta (BVA_i) + \gamma (BVA_i)^2$
Estimating Highest (Best-Practice) Potential Value

• Achieved MV = Frontier MV − Lost MV

• $MVA_i = \alpha + \beta (BVA_i) + \gamma (BVA_i)^2 + \nu_i - \mu_i$

• Highest Potential MVA_i

 $= \alpha + \beta (BVA_i) + \gamma (BVA_i)^2$

• Noise-Adjusted $MVA_i = MVA_i - \nu_i$
Estimating Highest (Best-Practice) Potential Value

• Achieved MV = Frontier MV − Lost MV

• \(\text{MVA}_i = \alpha + \beta \text{(BVA}_i) + \gamma (\text{BVA}_i)^2 + \nu_i - \mu_i \)

• Highest Potential \(\text{MVA}_i \)

\[
= \alpha + \beta \text{(BVA}_i) + \gamma (\text{BVA}_i)^2
\]

• Noise-Adjusted \(\text{MVA}_i = \text{MVA}_i - \nu_i \)

• \(\text{Lost } \text{MVA}_i = E [\mu_i |(\nu_i + \mu_i)] \)

\[
= \alpha + \beta \text{(BVA}_i) + \gamma (\text{BVA}_i)^2 - (\text{MVA}_i - \nu_i)
\]
Estimating Highest (Best-Practice) Potential Value

- Achieved MV = Frontier MV − Lost MV
- \(\text{MVA}_i = \alpha + \beta (BVA_i) + \gamma (BVA_i)^2 + \nu_i - \mu_i \)
- Highest Potential \(\text{MVA}_i \)
 \[= \alpha + \beta (BVA_i) + \gamma (BVA_i)^2 \]
- Noise-Adjusted \(\text{MVA}_i = \text{MVA}_i - \nu_i \)
- Lost \(\text{MVA}_i = E[\mu_i | (\nu_i + \mu_i)] \)
 \[= \alpha + \beta (BVA_i) + \gamma (BVA_i)^2 - (\text{MVA}_i - \nu_i) \]
Stochastic Frontier: Highest Market Value to Book-Value Investment

Deterministic Kernel of the Potential-Value Frontier:
\[FMVA_i = \alpha + \beta (BVA_i) + \gamma (BVA_i)^2 \]

- Highest Potential Market Value of Assets: \(\alpha + \beta (BVA_i) + \gamma (BVA_i)^2 \)
- Noise-Adjusted Achieved Market Value of Assets: \(MVA_i - \nu_i \)
- Achieved Market Value of Assets: \(MVA_i \)
- Market Value of Assets
- Book Value of Assets (net of goodwill)

MV Shortfall = 12
MV Inefficiency = 12/120
MV Inefficiency = 12/120 = 0.10
Q Ratio = 108/100 = 1.08
Value of Investment Opportunities

• Highest potential value of assets in markets in which a bank operates given
 – book value investment in assets
 – GDP growth rate
 – market concentration
Value of Investment Opportunities

- Highest potential value of assets in markets in which a bank operates given
 - book-value investment in assets
 - GDP growth rate
 - market concentration
Value of Investment Opportunities

• Highest potential value of assets in markets in which a bank operates given
 - book-value investment in assets
 - GDP growth rate
 - market concentration
Value of Investment Opportunities

• Highest potential value of assets in markets in which a bank operates given
 - book value investment in assets
 - GDP growth rate
 - market concentration

• Highest potential value assets/book value assets = investment opportunity ratio
Value of Investment Opportunities

• Highest potential value of assets in markets in which a bank operates given
 - book value investment in assets
 - GDP growth rate
 - market concentration

• Highest potential value assets/book value assets = investment opportunity ratio

• Value of assets in a competitive auction
Value of Investment Opportunities vs Market-Value Inefficiency

- Highest potential value of assets in markets in which a bank operates given
 - book-value investment in assets
 - GDP growth rate
 - market concentration
Value of Investment Opportunities vs Market-Value Inefficiency

• Highest potential value of assets in markets in which a bank operates given
 - book-value investment in assets
 - GDP growth rate
 - market concentration

• Highest potential value of assets over all relevant banking markets given
 - book-value investment in assets
 - penalizes suboptimal locations
Investment Strategies and Financial Performance

• $P_i = a + X^2 + \mu_i$

 - where $P_i = $ performance measured by

 • ln market value of assets
 • market-value inefficiency ratio
Investment Strategies and Financial Performance

- $P_i = a + X^2 + \mu_i$
 - where X is a set of regressors
 - In book-value of assets
 - ownership structure
 - investment opportunity ratio
 - loan quality
 - asset and liability composition
 - off-balance-sheet activities
 - equity capital ratio (proportion of assets)
 - equity capital ratio interacted with . . .
Investment Strategies and Financial Performance

- $P_i = a + X^2 + \mu_i$
 - where X is a set of regressors
 - ln book-value of assets
 - ownership structure
 - investment opportunity ratio
 - loan quality
 - asset and liability composition
 - off-balance-sheet activities
 - equity capital ratio (proportion of assets)
 - equity capital ratio interacted with . . .
Investment Strategies and Financial Performance

- $P_i = a + X^2 + \mu_i$
 - where X is a set of regressors
 - equity capital ratio (proportion of assets)
 - equity capital ratio interacted with . . .
 - \ln book-value of assets
Investment Strategies and Financial Performance

\[P_i = a + X^2 + \mu_i \]

- where \(X \) is a set of regressors
 - equity capital ratio (proportion of assets)
 - equity capital ratio interacted with . . .
 - \(\ln \) book-value of assets
 - investment opportunity ratio
Investment Strategies and Financial Performance

- $p_i = a + X^2 + \mu_i$
 - where X is a set of regressors
 - equity capital ratio (proportion of assets)
 - equity capital ratio interacted with . . .
 - ln book-value of assets
 - investment opportunity ratio

- How is performance related to capital ratio?
 - Is the performance effect of capital influenced by
 - size
Investment Strategies and Financial Performance

-\[P_i = a + X^2 + \mu_i \]

- where \(X \) is a set of regressors
 - equity capital ratio (proportion of assets)
 - equity capital ratio interacted with...
 - \(\ln \) book-value of assets
 - investment opportunity ratio

- How is performance related to capital ratio?
 - Is the performance effect of capital influenced by
 - size
 - value of investment opportunities
Performance Equations

• \(P_i = a + X^2 + \mu_i \)
 - estimated annually 2007 and 2013
Performance Equations

- \(P_i = a + X^2 + \mu_i \)
- 2013
- \(\partial \ln \text{Market Value}_i / \partial \text{capital ratio}_i \)
Performance Equations

• \(P_i = a + X^2 + \mu_i \)
 - 2013
 - \(\frac{\partial \ln \text{Market Value}_i}{\partial \text{capital ratio}_i} = 4.832 \)
 + (-0.239)(\(\ln(\text{book-value assets}_i (1000s)) \))
 + (-0.657)(\(\text{investment-opportunity ratio}_i \))
Performance Equations

- \(P_i = a + X^2 + \mu_i \)

 - 2013

 - \(\frac{\partial \ln \text{Market Value}_i}{\partial \text{capital ratio}_i} = 4.832 \)

 + (-0.239)(\ln(\text{book-value assets}_i (1000s)))

 + (-0.657)(\text{investment-opportunity ratio}_i) \)
Performance Equations

- $P_i = a + X^2 + \mu_i$
 - 2013
 - $\partial \ln \text{Market Value}_i / \partial \text{capital ratio}_i = 4.832$
 - $+ (-0.239)(\ln(\text{book-value assets}_i (1000s)))$
 - $+ (-0.657)(\text{investment-opportunity ratio}_i)$
Performance Equations

- $P_i = a + X^2 + \mu_i$
 - 2013
 - $\partial \ln \text{Market Value}_i / \partial \text{capital ratio}_i = 4.832$
 - $+$ $(-0.239)(\ln(\text{book-value assets}_i (1000s)))$
 - $+$ $(-0.657)(\text{investment-opportunity ratio}_i)$
Performance Equations

- \(P_i = a + X^2 + \mu_i \)
 - 2013
 - \(\partial \ln \text{Market Value}_i / \partial \text{capital ratio}_i = 4.832 \)
 + (-0.239)(\ln(\text{book-value assets}_i (1000s)))
 + (-0.657)(\text{investment-opportunity ratio}_i)
 - \(\partial \text{Market Value Inefficiency}_i / \partial \text{capital ratio}_i \)
Performance Equations

\[P_i = a + X^2 + \mu_i \]

- 2013

- \(\frac{\partial \ln \text{Market Value}_i}{\partial \text{capital ratio}_i} = 4.832 \)
 + (-0.239)(\ln(\text{book-value assets}_i (1000s)))
 + (-0.657)(\text{investment-opportunity ratio}_i)

- \(\frac{\partial \text{Market Value Inefficiency}_i}{\partial \text{capital ratio}_i} = -12.841 + (0.453)(\ln(\text{book-value assets}_i (1000s))) + (4.252)(\text{investment-opportunity ratio}_i) \)
Performance Equations

- \(P_i = a + X^2 + \mu_i \)
- 2013
- \(\partial \ln \text{Market Value}_i / \partial \text{capital ratio}_i = 4.832 + (-0.239)(\ln(\text{book-value assets}_i (1000s))) \)
- \(\partial \text{Market Value Inefficiency}_i / \partial \text{capital ratio}_i = -12.841 + (0.453)(\ln(\text{book-value assets}_i (1000s))) + (4.252)(\text{investment-opportunity ratio}_i) \)
Performance Equations

\[P_i = a + X^2 + \mu_i \]

- 2013

- \[\frac{\partial \ln \text{Market Value}_i}{\partial \text{capital ratio}_i} = 4.832 \]
 + (-0.239)(\ln(\text{book-value assets}_i \ (1000s)))
 + (-0.657)(\text{investment-opportunity ratio}_i) \]

- \[\frac{\partial \text{Market Value Inefficiency}_i}{\partial \text{capital ratio}_i} = -12.841 + (0.453)(\ln(\text{book-value assets}_i \ (1000s))) + (4.252)(\text{investment-opportunity ratio}_i) \]
Performance Equations

• \(P_i = a + X^2 + \mu_i \)

 - 2013

 - \(\partial \ln \text{Market Value}_i / \partial \text{capital ratio}_i = 4.832 \)
 \(+ (-0.239)(\ln(\text{book-value assets}_i (1000s)))
 \) \(+ (-0.657)(\text{investment-opportunity ratio}_i) \)

 - \(\partial \text{Market Value Inefficiency}_i / \partial \text{capital ratio}_i = -12.841 \)
 \(+ (0.453)(\ln(\text{book-value assets}_i (1000s))) + (4.252)(\text{investment-opportunity ratio}_i) \)
2013 Data: Market Value of Assets for 167 BHCs

- Under-capitalized banks (more valuable IOs)

 • **132 of 167** BHCs improve financial performance by increasing capital ratio (97 statistically significant)
2013 Data: Market Value of Assets for 167 BHCs

- **Under-capitalized banks** (more valuable IOs)
 - **132 of 167** BHCs improve financial performance by **increasing** capital ratio (97 statistically significant)

- **Over-capitalized banks** (less valuable IOs)
 - **35 of 167** BHCs improve performance by **reducing** capital ratio (15 statistically significant)
2013 Data: Market Value of Assets for 167 BHCs

- **Under-capitalized banks** (more valuable IOs)
 - 132 of 167 BHCs improve financial performance by **increasing** capital ratio (97 statistically significant)

- **Over-capitalized banks** (less valuable IOs)
 - 35 of 167 BHCs improve performance by **reducing** capital ratio (15 statistically significant)
2013 Data: Market Value of Assets for 167 BHCs

- **Under-capitalized banks** (more valuable IOs)
 - 132 of 167 BHCs improve financial performance by increasing capital ratio (97 statistically significant)

- **Over-capitalized banks** (less valuable IOs)
 - 35 of 167 BHCs improve performance by reducing capital ratio (15 statistically significant)
 - Systemically important: assets > $50 billion
 - 15 of 21 improve financial performance by reducing the capital ratio (statistically different from zero)
2013 Data: Market Value of Assets for 167 BHCs

- **Under-capitalized banks** (more valuable IOs)
 - 132 of 167 BHCs improve financial performance by increasing capital ratio (97 statistically significant)

- **Over-capitalized banks** (less valuable IOs)
 - 35 of 167 BHCs improve performance by reducing capital ratio (15 statistically significant)
 - Systemically important: assets > $50 billion
 - 15 of 21 improve financial performance by reducing the capital ratio (statistically different from zero)
2013 Data: Market Value of Assets for 167 BHCs

- **Under-capitalized banks** (more valuable IOs)
 - 132 of 167 BHCs improve financial performance by **increasing** capital ratio (97 statistically significant)

- **Over-capitalized banks** (less valuable IOs)
 - 35 of 167 BHCs improve performance by **reducing** capital ratio (15 statistically significant)
 - **Systemically important: assets > $50 billion**
 - 15 of 21 improve financial performance by **reducing** the capital ratio (statistically different from zero)
2007 Data: Market Value of Assets for 142 BHCs

- **Under-capitalized banks** (more valuable IOs)

 - 33 of 142 BHCs improve financial performance by increasing capital ratio (0 statistically significant)
2007 Data: Market Value of Assets for 142 BHCs

- **Under-capitalized banks** (more valuable IOs)
 - 33 of 142 BHCs improve financial performance by increasing capital ratio (0 statistically significant)

- **Over-capitalized banks** (less valuable IOs)
 - 109 of 142 BHCs improve performance by reducing capital ratio (29 statistically significant)
2007 Data: Market Value of Assets for 142 BHCs

- **Under-capitalized banks** (more valuable IOs)
 - 33 of 142 BHCs improve financial performance by **increasing** capital ratio (0 statistically significant)

- **Over-capitalized banks** (less valuable IOs)
 - 109 of 142 BHCs improve performance by **reducing** capital ratio (29 statistically significant)
2007 Data: Market Value of Assets for 142 BHCs

- **Under-capitalized banks** (more valuable IOs)
 - 33 of 142 BHCs improve financial performance by **increasing** capital ratio (0 statistically significant)

- **Over-capitalized banks** (less valuable IOs)
 - 109 of 142 BHCs improve performance by **reducing** capital ratio (29 statistically significant)

- **Systemically important: assets > $50 billion**
 - 17 of 17 improve financial performance by **reducing** the capital ratio (statistically different from zero).
2007 Data: Market Value of Assets for 142 BHCs

- **Under-capitalized banks** (more valuable IOs)
 - 33 of 142 BHCs improve financial performance by **increasing** capital ratio (0 statistically significant)

- **Over-capitalized banks** (less valuable IOs)
 - 109 of 142 BHCs improve performance by **reducing** capital ratio (29 statistically significant)
 - **Systemically important: assets > $50 billion**
 - 17 of 17 improve financial performance by **reducing** the capital ratio (statistically different from zero).
2007 Data: Market Value of Assets for 142 BHCs

- **Under-capitalized banks** (more valuable IOs)
 - 33 of 142 BHCs improve financial performance by increasing capital ratio (0 statistically significant)

- **Over-capitalized banks** (less valuable IOs)
 - 109 of 142 BHCs improve performance by reducing capital ratio (29 statistically significant)
 - **Systemically important: assets > $50 billion**
 - 17 of 17 improve financial performance by **reducing** the capital ratio (statistically different from zero).
<table>
<thead>
<tr>
<th>Year</th>
<th>(\frac{\ln(\text{Market Value of Assets})}{\text{Capital Ratio}})</th>
<th>Market-Value Inefficiency/(\frac{\text{Capital Ratio}}{})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\text{> 0}) N=97</td>
<td>(\text{< 0}) N=15</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>(\text{< 0}) N=110</td>
<td>(\text{> 0}) N=20</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>Mean</td>
</tr>
<tr>
<td>2013</td>
<td>Performance/(\frac{\text{Capital Ratio}}{})</td>
<td>Performance/(\frac{\text{Capital Ratio}}{})</td>
</tr>
<tr>
<td></td>
<td>0.397</td>
<td>-0.6782</td>
</tr>
<tr>
<td></td>
<td>(< 0.0001)</td>
<td>(\text{< 0}))</td>
</tr>
<tr>
<td></td>
<td>-0.453</td>
<td>0.876</td>
</tr>
<tr>
<td></td>
<td>(< 0.0001)</td>
<td>(\text{> 0}))</td>
</tr>
<tr>
<td></td>
<td>Book Value Assets (1,000s)</td>
<td>Book Value Assets (1,000s)</td>
</tr>
<tr>
<td></td>
<td>3,446,971</td>
<td>791,823,540</td>
</tr>
<tr>
<td></td>
<td>(0.0018)</td>
<td>(0.0018)</td>
</tr>
<tr>
<td></td>
<td>Investment Opportunity Ratio</td>
<td>Investment Opportunity Ratio</td>
</tr>
<tr>
<td></td>
<td>1.3326</td>
<td>1.125</td>
</tr>
<tr>
<td></td>
<td>(< 0.0001)</td>
<td>(\text{< 0}))</td>
</tr>
<tr>
<td></td>
<td>1.293</td>
<td>1.145</td>
</tr>
<tr>
<td></td>
<td>Tobin’s q Ratio</td>
<td>Tobin’s q Ratio</td>
</tr>
<tr>
<td></td>
<td>1.0751</td>
<td>1.037</td>
</tr>
<tr>
<td></td>
<td>(0.0012)</td>
<td>(0.0012)</td>
</tr>
<tr>
<td></td>
<td>1.078</td>
<td>1.041</td>
</tr>
<tr>
<td></td>
<td>Market-Value Inefficiency Ratio</td>
<td>Market-Value Inefficiency Ratio</td>
</tr>
<tr>
<td></td>
<td>0.233</td>
<td>0.054</td>
</tr>
<tr>
<td></td>
<td>(< 0.0001)</td>
<td>(\text{< 0}))</td>
</tr>
<tr>
<td></td>
<td>0.195</td>
<td>0.058</td>
</tr>
<tr>
<td></td>
<td>Book-Value Equity/Total Assets</td>
<td>Book-Value Equity/Total Assets</td>
</tr>
<tr>
<td></td>
<td>0.110</td>
<td>0.109</td>
</tr>
<tr>
<td></td>
<td>0.9039</td>
<td>0.9039</td>
</tr>
<tr>
<td></td>
<td>(\text{> 0}))</td>
<td>(\text{> 0}))</td>
</tr>
<tr>
<td></td>
<td>0.109</td>
<td>0.109</td>
</tr>
<tr>
<td></td>
<td>(0.8453)</td>
<td>(0.8453)</td>
</tr>
<tr>
<td>Year</td>
<td>(\ln(\text{Market Value of Assets})/\text{Capital Ratio})</td>
<td>(\text{Market-Value Inefficiency/\text{Capital Ratio}})</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2013</td>
<td>> 0 (N=97) < 0 (N=15)</td>
<td>< 0 (N=110) > 0 (N=20)</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>Mean</td>
</tr>
<tr>
<td>•Performance/ •Capital Ratio</td>
<td>0.397</td>
<td>-0.6782</td>
</tr>
<tr>
<td>Book Value Assets (1,000s)</td>
<td>3,446,971</td>
<td>791,823,540</td>
</tr>
<tr>
<td>Investment Opportunity Ratio</td>
<td>1.3326</td>
<td>1.125</td>
</tr>
<tr>
<td>Tobin’s q Ratio</td>
<td>1.0751</td>
<td>1.037</td>
</tr>
<tr>
<td>Market-Value Inefficiency Ratio</td>
<td>0.233</td>
<td>0.054</td>
</tr>
<tr>
<td>Book-Value Equity/ Total Assets</td>
<td>0.110</td>
<td>0.109</td>
</tr>
<tr>
<td>2013</td>
<td>•(\ln(\text{Market Value of Assets})/\text{Capital Ratio})</td>
<td>• (\text{Market-Value Inefficiency}/\text{Capital Ratio})</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>(> 0) (N=97)</td>
<td>(< 0) (N=15)</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>Mean</td>
</tr>
<tr>
<td>Mean</td>
<td>Mean</td>
<td>(P)</td>
</tr>
<tr>
<td>Mean</td>
<td>Mean</td>
<td>(P)</td>
</tr>
<tr>
<td>•Performance/•Capital Ratio</td>
<td>0.397</td>
<td>-0.6782</td>
</tr>
<tr>
<td></td>
<td>(< 0) (N=110)</td>
<td>(> 0) (N=20)</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>Mean</td>
</tr>
<tr>
<td>Mean</td>
<td>Mean</td>
<td>(P)</td>
</tr>
<tr>
<td>Mean</td>
<td>Mean</td>
<td>(P)</td>
</tr>
<tr>
<td>Book Value Assets (1,000s)</td>
<td>3,446,971</td>
<td>791,823,540</td>
</tr>
<tr>
<td></td>
<td>0.0018</td>
<td>(0.0018)</td>
</tr>
<tr>
<td></td>
<td>5,050,993</td>
<td>614,164,373</td>
</tr>
<tr>
<td></td>
<td>0.0002</td>
<td>(0.0002)</td>
</tr>
<tr>
<td>Investment Opportunity Ratio</td>
<td>1.3326</td>
<td>1.125</td>
</tr>
<tr>
<td></td>
<td>(< 0.0001)</td>
<td>(< 0.0001)</td>
</tr>
<tr>
<td></td>
<td>1.293</td>
<td>1.145</td>
</tr>
<tr>
<td></td>
<td>(< 0.0001)</td>
<td>(< 0.0001)</td>
</tr>
<tr>
<td>Tobin’s q Ratio</td>
<td>1.0751</td>
<td>1.037</td>
</tr>
<tr>
<td></td>
<td>0.0012</td>
<td>(0.0012)</td>
</tr>
<tr>
<td></td>
<td>1.078</td>
<td>1.041</td>
</tr>
<tr>
<td></td>
<td>(0.0002)</td>
<td>(0.0002)</td>
</tr>
<tr>
<td>Market-Value Inefficiency Ratio</td>
<td>0.233</td>
<td>0.054</td>
</tr>
<tr>
<td></td>
<td>(< 0.0001)</td>
<td>(< 0.0001)</td>
</tr>
<tr>
<td></td>
<td>0.195</td>
<td>0.058</td>
</tr>
<tr>
<td></td>
<td>(< 0.0001)</td>
<td>(< 0.0001)</td>
</tr>
<tr>
<td>Book-Value Equity/Total Assets</td>
<td>0.110</td>
<td>0.109</td>
</tr>
<tr>
<td></td>
<td>0.9039</td>
<td>(0.8453)</td>
</tr>
<tr>
<td></td>
<td>0.109</td>
<td>0.109</td>
</tr>
<tr>
<td></td>
<td>(0.8453)</td>
<td>(0.8453)</td>
</tr>
<tr>
<td>2013</td>
<td>In(Market Value of Assets)/Capital Ratio</td>
<td>Market-Value Inefficiency/Capital Ratio</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>> 0 N=97</td>
<td>< 0 N=15</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Performance/ Capital Ratio</td>
<td>0.397</td>
<td>-0.6782</td>
</tr>
<tr>
<td></td>
<td>0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>Book Value Assets (1,000s)</td>
<td>3,446,971</td>
<td>791,823,540</td>
</tr>
<tr>
<td></td>
<td>0.0018</td>
<td>0.0018</td>
</tr>
<tr>
<td>Investment Opportunity Ratio</td>
<td>1.3326</td>
<td>1.125</td>
</tr>
<tr>
<td></td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>Tobin’s q Ratio</td>
<td>1.0751</td>
<td>1.037</td>
</tr>
<tr>
<td></td>
<td>0.0012</td>
<td>0.0002</td>
</tr>
<tr>
<td>Market-Value Inefficiency Ratio</td>
<td>0.233</td>
<td>0.054</td>
</tr>
<tr>
<td></td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>Book-Value Equity/ Total Assets</td>
<td>0.110</td>
<td>0.109</td>
</tr>
<tr>
<td></td>
<td>0.8453</td>
<td>0.8453</td>
</tr>
</tbody>
</table>
Capital Market Incentives to Increase the Capital Ratio

• Smaller banks
Capital Market Incentives to Increase the Capital Ratio

• Smaller banks
 – 97 out of 167 banks in 2013
Capital Market Incentives to Increase the Capital Ratio

• Smaller banks
 - 97 out of 167 banks in 2013
 - 0 out of 142 banks in 2007
Capital Market Incentives to Increase the Capital Ratio

- Smaller banks
 - 97 out of 167 banks in 2013
 - 0 out of 142 banks in 2007

- Higher investment opportunity ratio
Capital Market Incentives to Decrease the Capital Ratio

• Large, systemically important banks
Capital Market Incentives to Decrease the Capital Ratio

• Large, systemically important banks
 - 15 out of 21 in 2013 (15/167)
Capital Market Incentives to Decrease the Capital Ratio

- Large, systemically important banks
 - 15 out of 21 in 2013
 - 17 out of 17 in 2007
Capital Market Incentives to Decrease the Capital Ratio

- Large, systemically important banks
 - 15 out of 21 in 2013
 - 17 out of 17 in 2007
- Lower investment opportunity ratio
Agency Incentives

- Laeven and Levine (2009)
 - Diversified large shareholders vs debtholders and non-shareholder managers
Agency Incentives

- Laeven and Levine (2009)
 - Diversified large shareholders vs debtholders and non-shareholder managers
 - Risk-taking is positively related to large shareholdings.
Agency Incentives

• Laeven and Levine (2009)
 - Diversified large shareholders vs debtholders and non-shareholder managers
 - **Risk-taking is positively related to large shareholdings.**

• Cheng, Hong, and Schneinkman (2015)
 - High risk and high residual executive compensation related to institutional ownership.
Conclusions

• Evidence of two faces of equity investment
 – Banks with higher valued investment opportunities: an increase in capital ratio associated with better financial performance
Conclusions

• Evidence of two faces of equity investment
 - Banks with higher valued investment opportunities: an increase in capital ratio associated with better financial performance
 • smaller banks
Conclusions

• Evidence of two faces of equity investment
 – Banks with higher valued investment opportunities: an increase in capital ratio associated with better financial performance
 • smaller banks
 • market discipline tends to enhance financial stability
Conclusions

• Evidence of two faces of equity investment
 - Banks with higher valued investment opportunities: an increase in capital ratio associated with better financial performance
 • smaller banks
 • market discipline tends to enhance financial stability
 - Banks with lower valued investment opportunities: a decrease in capital ratio associated with better financial performance
Conclusions

• Evidence of two faces of equity investment
 – Banks with higher valued investment opportunities: an increase in capital ratio associated with better financial performance
 • smaller banks
 • market discipline tends to enhance financial stability
 – Banks with lower valued investment opportunities: a decrease in capital ratio associated with better financial performance
 • large, systemically important banks
Conclusions

- Evidence of two faces of equity investment
 - Banks with higher valued investment opportunities: an increase in capital ratio associated with better financial performance
 - smaller banks
 - market discipline tends to enhance financial stability
 - Banks with lower valued investment opportunities: a decrease in capital ratio associated with better financial performance
 - large, systemically important banks
 - market discipline tends to work against stability
Conclusions

- Market discipline working for stability
 - “...private regulation generally has proved far better at constraining excessive risk-taking than has government regulation.” – Alan Greenspan, 2005
Conclusions

• Market discipline working for stability
 – “...private regulation generally has proved far better at constraining excessive risk-taking than has government regulation.” – Alan Greenspan, 2005

• Market discipline working against stability
 – “When the music stops, in terms of liquidity, things will be complicated. But as long as the music is playing, you've got to get up and dance. We're still dancing.” – Charles O. Prince, 2007
Conclusions

• Market discipline working for stability
 – “...private regulation generally has proved far better at constraining excessive risk-taking than has government regulation.” – Alan Greenspan, 2005

• Market discipline working against stability
 – “When the music stops, in terms of liquidity, things will be complicated. But as long as the music is playing, you've got to get up and dance. We're still dancing.” – Charles O. Prince, 2007
 – “...those of us who have looked to the self-interest of lending institutions to protect shareholders’ equity (myself especially) are in a state of shocked disbelief.” – Alan Greenspan, 2008
Conclusions

• Evidence of two faces of equity investment

• Need for regulatory capital requirements
 – Basel III
 – TLAC
 – CoCos